The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 02, 1985
Filed:
Nov. 16, 1982
Christian G Michel, Ossining, NY (US);
Rozalie Schachter, New York, NY (US);
Mark A Kuck, Upper Montclair, NJ (US);
John A Baumann, Dobbs Ferry, NY (US);
Paul M Raccah, Chicago, IL (US);
Stauffer Chemical Company, Westport, CT (US);
Abstract
High phosphorus polyphosphides, namely MP.sub.x, where M is an alkali metal (Li, Na, K, Rb, and Cs) or metals mimicking the bonding behavior of an alkali metal, and where x=7 to 15 or very much greater than 15 (new forms of phosphorus) are useful semiconductors in their crystalline, polycrystalline and amorphous forms (boules and films). MP.sub.15 appears to have the best properties and KP.sub.15 is the easier to synthesize. P may include other pnictides as well as other trivalent atomic species. Resistance lowering may be accomplished by doping with Ni, Fe, Cr, and other metals having occupied d or f outer electronic levels; or by incorporation of As and other pnictides. Rectifying Schottky junction devices doped with Ni and employing Ni as a back contact comprise Cu, Al, Mg, Ni, Au, Ag, and Ti as junction forming top contacts. Photovoltaic, photoresistive, and photoluminescent devices are also disclosed. All semiconductor applications appear feasible. Single and multiple source vapor transport, condensed phase, melt quench, flash evaporation, chemical vapor deposition, and molecular flow deposition may be employed in synthesizing these materials. Vapor transport may be employed to purify phosphorus. The materials may be employed as protective coatings, optical coatings, fire retardants, fillers and reinforcing fillers for plastics and glasses, antireflection coatings for infrared optics, infrared transmitting windows, and optical rotators.