The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 27, 2024
Filed:
Dec. 04, 2019
Shanghai Ic R&d Center Co., Ltd., Shanghai, CN;
Shanghai Integrated Circuit Equipment & Materials Industry Innovation Center Co., Ltd., Shanghai, CN;
Xinyu Li, Shanghai, CN;
Shanghai IC R&D Center Co., Ltd., Shanghai, CN;
Shanghai Integrated Circuit Equipment & Materials Industry Innovation Center Co., Ltd, Shanghai, CN;
Abstract
The present invention discloses a bonding cavity structure and a bonding method, the bonding cavity structure comprises an upper carrier and a lower carrier, a gas-flow forming mechanism, which comprises multiple open-close integrated arms, the integrated arms are provided with multiple nozzles facing to wafer bonding surfaces, and the nozzles are switched to gas nozzles or vacuum suction nozzles, a closed space is formed by all the integrated arms closed together with the carriers, all the nozzle located on a side of two wafers are set as the gas nozzles, which blow gas parallel to the wafer bonding surfaces, meanwhile, all the nozzles located on the other side of the two wafers are set as the vacuum suction nozzles, which suck the gas blown from the gas nozzle at corresponding position, a high-speed gas-flow is generated between the two wafers, so as to produce a low pressure of Bernoulli effect, the wafers are not only subjected to thrust forces from backsides, but tension forces between the bonding surfaces are also affected by uniform low pressure, which enhances force uniformity during bonding process, and reduces an impact of particles on the bonding surfaces in the closed space.