The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 06, 2020
Filed:
Sep. 29, 2017
Intel Corporation, Santa Clara, CA (US);
Venkateswara Madduri, Austin, TX (US);
Elmoustapha Ould-Ahmed-Vall, Chandler, AZ (US);
Jesus Corbal, King City, OR (US);
Mark Charney, Lexington, MA (US);
Robert Valentine, Kiryat Tivon, IL;
Binwei Yang, Austin, TX (US);
Intel Corporation, Santa Clara, CA (US);
Abstract
An apparatus and method for multiplying packed real and imaginary components of complex numbers. For example, one embodiment of a processor comprises: a decoder to decode a first instruction to generate a decoded instruction; a first source register to store a first plurality of packed real and imaginary data elements; a second source register to store a second plurality of packed real and imaginary data elements; execution circuitry to execute the decoded instruction, the execution circuitry comprising: multiplier circuitry to select real and imaginary data elements in the first source register and second source register to multiply, the multiplier circuitry to multiply each selected imaginary data element in the first source register with a selected real data element in the second source register, and to multiply each selected real data element in the first source register with a selected imaginary data element in the second source register to generate a plurality of imaginary products, adder circuitry to add a first subset of the plurality of imaginary products to generate a first temporary result and to add a second subset of the plurality of imaginary products to generate a second temporary result; accumulation circuitry to combine the first temporary result with first data from a destination register to generate a first final result and to combine the second temporary result with second data from the destination register to generate a second final result and to store the first final result and second final result back in the destination register.