The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 22, 2008
Filed:
Jul. 27, 2004
Hegeon Kwun, San Antonio, TX (US);
Sang Young Kim, San Antonio, TX (US);
Hegeon Kwun, San Antonio, TX (US);
Sang Young Kim, San Antonio, TX (US);
Southwest Research Institute, San Antonio, TX (US);
Abstract
A method and system for implementing magnetostrictive sensor techniques for the nondestructive evaluation of pipeline structures. The system consists of a magnetostrictive sensor instrument unit, a data storage unit, and a plurality of magnetostrictive sensor probes are positioned on an in-line inspection vehicle. The instrumentation unit includes electronics for transmitting excitation pulses to a transmitting magnetostrictive sensor probe as well as electronics for amplifying and conditioning the signals detected by a receiving magnetostrictive sensor probe. The magnetostrictive sensor probes include both plate magnetostrictive sensors and permanent magnets which provide a DC bias magnetic field necessary for magnetostrictive sensor operation. The transmitting and receiving probes are attached to the in-line inspection vehicle by way of mechanical arms on opposing sides of the vehicle. The mechanical arms are spring loaded and are equipped with rollers which maintain the probes at approximately constant distances from the inside diameter of the pipe wall. The method involves generating pulses of shear horizontal waves of frequencies less than 200 kHz. The transmitting magnetostrictive sensor probe generates a wave that propagates in both directions around the circumference of the pipe wall from a point adjacent to the transmitting probe. Both waves are thereafter received at the receiving probe spaced 180 degrees apart from the transmitting probe. Any defect present in the pipe wall within the circumference being investigated will show up in the received signal.