The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 03, 1986
Filed:
Mar. 31, 1985
Craig G Smith, North Plainfield, NJ (US);
AT&T Bell Laboratories, Murray Hill, NJ (US);
Abstract
The invention comprises improvements in inert anode electroplating processes that make possible the utilization of typically inexpensive and otherwise advantageous cation-yielding compounds for replenishing the plating bath, compounds that typically are not well suited for such use in prior art systems due to their relatively low dissolution rate which typically requires their use in powder form, and the tendency of the powder particles to aggregate. Exemplary applications for the improved plating process are in Cu-, Ni-, and Pd-plating, and exemplary cation-yielding compounds or CuO, NiO, PdO, Cu(OH).sub.2,Ni(OH).sub.2, and Pd(OH).sub.2. The improvements according to the invention comprise agitating the powder/electrolyte mixture or slurry in a reactor vessel separate from the plating tank, and maintaining the cation concentration in the plating tank within predetermined limits. Agitation typically requires power input to the slurry of at least about 2.5 watt/liter of slurry, with a preferred range of power for CuO of about 10 .mu.m average particle size and concentration between about 5 and about 200 gram/liter being between about 5 and about 200 watt/liter of slurry. Schemes for maintaining the cation concentration in the plating bath within predetermined limits are described, and include controlling the rate of addition of cation-yielding compound to the slurry, and/or controlling the flow rate of electrolyte between reactor and plating tank.