The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 29, 2018
Filed:
Jun. 17, 2016
The Research Foundation for the State University of New York, Binghamton, NY (US);
Bo Long, Palo Alto, CA (US);
Zhongfei Mark Zhang, Vestal, NY (US);
The Research Foundation for the State University of New York, Binghamton, NY (US);
Abstract
Relational clustering has attracted more and more attention due to its phenomenal impact in various important applications which involve multi-type interrelated data objects, such as Web mining, search marketing, bioinformatics, citation analysis, and epidemiology. A probabilistic model is presented for relational clustering, which also provides a principal framework to unify various important clustering tasks including traditional attributes-based clustering, semi-supervised clustering, co-clustering and graph clustering. The model seeks to identify cluster structures for each type of data objects and interaction patterns between different types of objects. Under this model, parametric hard and soft relational clustering algorithms are provided under a large number of exponential family distributions. The algorithms are applicable to relational data of various structures and at the same time unify a number of state-of-the-art clustering algorithms: co-clustering algorithms, the k-partite graph clustering, and semi-supervised clustering based on hidden Markov random fields.