The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 06, 2018
Filed:
Sep. 04, 2015
Sean Xiaolu Wang, Wilmington, DE (US);
Qun LI, Newark, DE (US);
Sean Xiaolu Wang, Wilmington, DE (US);
Qun Li, Newark, DE (US);
BWT Property, Inc., Newark, DE (US);
Abstract
This invention discloses a laser induced breakdown spectroscopy (LIBS) apparatus based on a high repetition rate pulsed laser. The laser produces a train of laser pulses at a high repetition rate in the kHz or even higher range. When the laser beam hits the sample, it generates several thousands of micro-plasmas per second. Synchronized miniature CCD array optical spectrometer modules collect the LIBS signal from these micro-plasmas. By adjusting the integration time of the spectrometer to cover a plurality of periods of the laser pulse train, the spectrometer integrates the LIBS signal produced by this plurality of laser pulses. Hence the intensity of the obtained LIBS spectrum can be greatly improved to increase the signal-to-noise ratio (SNR) and lower the limit of detection (LOD). In addition, the influence of pulse to pulse variation of the laser is minimized since the obtained LIBS spectrum is the spectrum of a plurality of micro-plasmas produced by a plurality of laser pulses. The high repetition rate laser also makes it possible for fast scanning the laser beam over the sample surface such that an average spectrum of the sample is collected to overcome the sample non-uniformity issue or for performing spectral imaging of the sample by correlating the obtained LIBS spectrum with the position of the scanning laser beam.