The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 13, 2018
Filed:
Aug. 19, 2015
Samsung Electronics Co., Ltd., Gyeonggi-do, KR;
Industry-academic Cooperation Foundation Yonsei University, Seoul, KR;
Hyungju Nam, Seoul, KR;
Sooyong Choi, Seoul, KR;
Yeohun Yun, Hwaseong-si, KR;
Moonchang Choi, Seoul, KR;
Seongbae Han, Seoul, KR;
SAMSUNG ELECTRONICS CO., LTD., Suwon-si, KR;
Abstract
Disclosed is a 5G or pre-5G communication system to be provided for supporting a data transfer rate higher than that of a 4G communication system, such as LTE, and subsequent systems. The present invention relates to a method for transmitting and receiving a QAM signal in a filter bank-based multicarrier communication system, and an apparatus therefor. Particularly, the present invention provides an efficient transmission and reception method and apparatus capable of obtaining high performance in the transmission of a QAM signal without intrinsic interference in a multi-path delay channel environment in a filter bank-based multicarrier communication system. Accordingly, the present invention relates to a transmission method in a filter bank-based multicarrier (FBMC) communication system, and an apparatus therefor, the method comprising the steps of: spreading each of two QAM signals divided into a plurality of groups to a plurality of signals on a frequency axis; intersecting at least one signal, which is overlapped with a spread signal of an adjacent QAM signal among the plurality of spread signals, with the spread signal of the adjacent QAM signal; filtering, by each of the plurality of groups, the plurality of spread signals of which at least one signal has been intersected; and transmitting the plurality of filtered spread signals by being overlapped on a time axis.