The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 02, 2018
Filed:
Nov. 24, 2015
Japan Aviation Electronics Industry, Limited, Tokyo, JP;
Kenichi Nakazato, Tokyo, JP;
Yoshiyuki Kobayashi, Tokyo, JP;
JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, Tokyo, JP;
Abstract
An n-th-harmonic error estimation unit that estimates the error component of an n-th harmonic included in a resolver angle θ and a subtraction unit that subtracts an n-th-harmonic estimated angle error from θ to output the corrected angle θ' are included. The n-th-harmonic error estimation unit includes an n-th-harmonic error phase detection unit that obtains a phase difference u such that the integral, for a 1/n period of an electrical angle of the rotor, of the output obtained by synchronously detecting θ by using a rectangular wave obtained by comparison from a COS wave expressed as cos(nθ+u) becomes zero and generates a SIN wave expressed as sin(nθ+u); a synchronous detector that synchronously detects θ′ by using a rectangular wave obtained by comparison from the SIN wave; an integrator that integrates the detected output for a 1/n period of the electrical angle; an actual angle integral calculation unit; an amplitude setter that sets an error amplitude from the value obtained by subtracting the integral of the actual angle integral calculation unit from the integral of the integrator; and a multiplier that generates the n-th-harmonic estimated angle error by multiplying the SIN wave by the error amplitude.