The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 21, 2017
Filed:
Oct. 13, 2015
Board of Regents, the University of Texas System, Austin, TX (US);
Allan MacDonald, Austin, TX (US);
Leonard Franklin Register, II, Austin, TX (US);
Emanuel Tutuc, Austin, TX (US);
Inti Sodemann, Austin, TX (US);
Hua Chen, Austin, TX (US);
Xuehao Mou, Austin, TX (US);
Sanjay K. Banerjee, Austin, TX (US);
Board of Regents, The University of Texas System, Austin, TX (US);
Abstract
A device or class of devices that provides a mechanism for controlling charge current flow in transistors that employs collective magnetic effects to overcome voltage limitations associated with single-particle thermionic emission as in conventional MOSFETs. Such a device may include two or more magnetic stacks with an easy-in-plane ferromagnetic film sandwiched between oppositely magnetically oriented perpendicular magnetization anisotropy (PMA) ferromagnets. Each stack includes two non-magnetic layers separating the easy-plane ferromagnetic film from the PMA layers. Charge current flow through one of these stacks controls the current-voltage negative differential resistance characteristics of the second stack through collective magnetic interactions. This can be exploited in a variety of digital logic gates consuming less energy than conventional CMOS integrated circuits. Furthermore, the easy-in-plane magnetic films may be subdivided into regions coupled through exchange interactions and the in-plane fixed magnetic layers in the input magnetic stacks can be used in non-volatile logic and memory.