The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 26, 2017
Filed:
Nov. 13, 2009
Enrique J. Garcia, Zaragoza, ES;
Anastasios John Hart, Cambridge, MA (US);
Diego S. Saito, Tupa, BR;
Brian L. Wardle, Lexington, MA (US);
Hulya Cebeci, Somerville, MA (US);
Enrique J. Garcia, Zaragoza, ES;
Anastasios John Hart, Cambridge, MA (US);
Diego S. Saito, Tupa, BR;
Brian L. Wardle, Lexington, MA (US);
Hulya Cebeci, Somerville, MA (US);
Massachusetts Institute of Technology, Cambridge, MA (US);
Abstract
Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures. In some instances, the application of a force may result in a material comprising relatively closely-spaced nanostructures. The materials described herein may be further processed for use in various applications, such as composite materials (e.g., nanocomposites). For example, a set of aligned nanostructures may be formed, and, after the application of a force, transferred, either in bulk or to another surface, and combined with another material (e.g., to form a nanocomposite) to enhance the properties of the material.