The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 10, 2017
Filed:
Aug. 21, 2015
Shenzhen China Star Optoelectronics Technology Co., Ltd., Shenzhen, CN;
Tao Hu, Shenzhen, CN;
SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD., Shenzhen, Guangdong, CN;
Abstract
The present invention provides a method for growing graphene on a surface of a gate electrode and a method for growing graphene on a surface of a source/drain electrode, in which a low-temperature plasma enhanced vapor deposition process is adopted to grow a graphene film, of which a film thickness is controllable, on a gate electrode or a source/drain electrode that contains copper, and completely coincides with a pattern of the gate electrode or the source/drain electrode. The manufacturing temperature of graphene is relatively low so that it is possible not to damage the structure of a thin-film transistor to the greatest extents and the supply of carbon sources that is used wide, having low cost and a simple manufacturing process, where existing PECVD facility of a thin-film transistor manufacturing line can be used without additional expense. The gate electrode or the source/drain electrode is covered with graphene and is prevented from contact with moisture and oxygen thereby overcoming the problem of a conventional TFT manufacturing process that a gate electrode or a source/drain electrode that contains copper is readily susceptible to oxidization. Further, the high electrical conductivity of graphene makes it possible not to affect the electrical performance of the entire device.