The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 20, 2016
Filed:
Dec. 31, 2013
Lexmark International, Inc., Lexington, KY (US);
Mark Thomas Bellino, Loveland, CO (US);
Gerald Hugh Ciecior, Westminster, CO (US);
Douglas Jeffrey Harris, Louisville, CO (US);
Weimei Luo, Louisville, CO (US);
Brian David Munson, Mead, CO (US);
Dat Quoc Nguyen, Platteville, CO (US);
Scott Daniel Reeves, Louisville, CO (US);
Tanya Yvonne Thames, Commerce City, CO (US);
LEXMARK INTERNATIONAL, INC., Lexington, KY (US);
Abstract
An overcoat layer and method to make an overcoated photoconductor drum of an electrophotographic image forming device using irradiation such as with electron beam (EB) or ultraviolet (UV) light is provided. The photoconductor drum is then cured using EB dose of between 10 and 100 kiloGrays (kGy), preferably between 20 and 40 kGys or UV irradiation with an exposure of between 0.1 and 2 J/cm. The unique overcoat layer of the present invention is formed having a biphasic morphology comprised of a highly cured crosslinked phase and a second phase enriched in uncured material. The desired amount of uncured uncrosslinked material found in the second phase of the biphasic structure, is between 2-70 wt % range, with particularly good combination of long-life and electrical performance when present at the 5-50 wt % level, and the best performance at the 15-40 wt % level. The biphasic morphology of the overcoat layer using the method of the present invention gives rise to the good wear rates while allowing rapid transport of the electrical charge and thus fast discharge properties of the photoconductor drum.