The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 23, 2016
Filed:
Mar. 06, 2014
University of Maryland, Baltimore, Baltimore, MD (US);
West Virginia University, Morgantown, WV (US);
Andrew Coop, Baltimore, MD (US);
Alexander D. Mackerell, Baltimore, MD (US);
Rae Matsumoto, Morgantown, WV (US);
UNIVERSITY OF MARYLAND, BALTIMORE, Baltimore, MD (US);
Abstract
An opioid narcotics used for the treatment of moderate-to-severe pain that primarily exert their analgesic effects through μ receptors. Although, traditional μ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. The present invention includes 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor, along with analogs of morphine, dihydromorphine, hydromorphone, codeine, dihydrocodeine, hydrocodone and ethylmorphine. Although UMB 425 lacks δ-specific motifs, conformationally sampled pharmacophore models for μ and δ receptors predict it to have efficacy similar to morphine at μ receptors and similar to naltrexone at δ receptors, due to the compound sampling conformations in which the hydroxyl moiety interacts with the receptors similar to orvinols. UMB 425 exhibits a mixed μ agonist/δ antagonist profile as determined in receptor binding. UMB 425 has mixed μ agonist/δ antagonist properties in vitro that translate to reduced tolerance liabilities in vivo.