The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 09, 2016

Filed:

Aug. 03, 2009
Applicant:

Jin Q. Cheng, Tampa, FL (US);

Inventor:

Jin Q. Cheng, Tampa, FL (US);

Assignee:

University of South Florida, Tampa, FL (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
G01N 33/574 (2006.01);
U.S. Cl.
CPC ...
G01N 33/57449 (2013.01); C12Q 2600/178 (2013.01);
Abstract

MicroRNAs (miRNAs) represent a novel class of genes that function as negative regulators of gene expression and have recently been implicated in several cancers. However, aberrant miRNA expression and its clinicopathological significance in human ovarian cancer have not been well documented. Numerous miRNAs are shown altered in human ovarian cancer, significantly miR-214, -199a*, -200a, -100, -125b, -30d, -221, -222, -126, and -24. Four miRNAs (miR-221, miR-222, miR-126, and miR-24) were found to be deregulated in all four histological types of ovarian carcinoma (serous, mucinous, endometrioid, and clear cell). Frequent deregulation of miR-214, -199a*, -200a and -100 was demonstrated in ovarian cancers. Significantly, miR-214 induces cell survival and cisplatin resistance through targeting down-regulation of proteins activating the Akt pathway. Inhibition of Akt using Akt inhibitor, API-2/triciribine, or PTEN cDNA lacking 3'UTR largely abrogates miR-214 induced cell survival. These findings indicate that deregulation of miRNAs is a recurrent event in human ovarian cancer and that miR-214 induces cell survival and cisplatin resistance primarily through targeting the PTEN/Akt pathway.


Find Patent Forward Citations

Loading…