The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 09, 2016
Filed:
Oct. 01, 2010
Manoj Mukund Koranne, Clarksville, MD (US);
David Chapamn, Ellicott City, MD (US);
Manoj Mukund Koranne, Clarksville, MD (US);
David Chapamn, Ellicott City, MD (US);
W. R. GRACE & CO.-CONN., Columbia, MD (US);
Abstract
The present invention is directed to a method of forming titania clad high surface area alumina suitable as a support for forming noble metal catalysts. The resultant catalysts exhibit resistance to poisoning by sulfurous materials and, therefore, are useful in applications directed to internal combustion engine emission conversion and the like. The present invention provides a commercially feasible and cost effective method of forming a highly desired support for noble metal catalyst application. The process comprises forming a slurry of porous alumina particulate suitable as a catalyst support for the intended application, mixing said slurry with a solution of titanyl sulfate having a pH of about 1, increasing the pH of the mixed slurry/solution at a slow rate of from 0.05 to 0.5 pH unit per minute to a pH of ≦4 by the addition of a basic solution, allowing the resultant slurry to age for a period of from 10 to 120 minutes, separating the treated porous alumina particulates and washing same free of sulfate with a weak base, drying and calcining said particulates to produce titania clad alumina particulate product. The resultant material exhibits a normalized sulfur uptake of less than about 45 μg/m-sample. Such material can subsequently be coated with a noble metal to form the catalyst material.