The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 30, 2015
Filed:
Apr. 09, 2009
Andreas Greiner, Amöneburg, DE;
Seema Agarwal, Marburg, DE;
Thomas Kissel, Staufen, DE;
Liqun Ren, Mannheim, DE;
Andreas Greiner, Amöneburg, DE;
Seema Agarwal, Marburg, DE;
Thomas Kissel, Staufen, DE;
Liqun Ren, Mannheim, DE;
BASF SE, Ludwigshafen am Rhein, DE;
Abstract
The invention at hand provides hydrolytically degradable ionic copolymers. These ionic copolymerizates are composed of one cyclic ketene acetal A, one anionic or cationic methacrylic acid derivative B, selected from 2-methyl-methacrylate, [2-(2-methyl-1-methylene-allyloxy)]ethanesulfonate, [2-(2-methyl-1-methylene-allyloxy)ethyl]phosphonate or a quaternary amine of the N,N-dimethylaminoethylmethacrylic acid (DMAEMA) and, optionally, a neutral methacrylic acid derivative C. The hydrolytically degradable anionic copolymers according to the present invention are produced by polymerizing the components A, B and C in the presence of a radical initiator under inert gas atmosphere and subsequent purification. All copolymers according to the present invention are hydrolytically degradable. Copolymers comprising a maximum of 40 mol-% of ester groups in the backbone are additionally biodegradable, wherein in the case of cationic copolymers a maximum of 20 mol-% of quaternized DMAEMA is allowed to be available. Cationic copolymers comprising at least 50 mol-% of the component B are antimicrobial. Both anionic as well as cationic copolymers are suitable for producing nanoparticles. Cationic copolymers are suitable for being used as superhydrophobic materials as well as adhesives. Anionic copolymers are suitable for biodegradable thermoplastic elastomers and for biodegradable ionomers.