The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 13, 2015
Filed:
Oct. 10, 2012
H. Jonathan Chao, Holmdel, NJ (US);
Yang Xu, Brooklyn, NY (US);
H. Jonathan Chao, Holmdel, NJ (US);
Yang Xu, Brooklyn, NY (US);
Polytechnic Institute of New York University, Brooklyn, NY (US);
Abstract
Deterministic Finite Automatons (DFAs) and Nondeterministic Finite Automatons (NFAs) are two typical automatons used in the Network Intrusion Detection System (NIDS). Although they both perform regular expression matching, they have quite different performance and memory usage properties. DFAs provide fast and deterministic matching performance but suffer from the well-known state explosion problem. NFAs are compact, but their matching performance is unpredictable and with no worst case guarantee. A new automaton representation of regular expressions, called Tunable Finite Automaton (TFA), is described. TFAs resolve the DFAs' state explosion problem and the NFAs' unpredictable performance problem. Different from a DFA, which has only one active state, a TFA allows multiple concurrent active states. Thus, the total number of states required by the TFA to track the matching status is much smaller than that required by the DFA. Different from an NFA, a TFA guarantees that the number of concurrent active states is bounded by a bound factor b that can be tuned during the construction of the TFA according to the needs of the application for speed and storage. A TFA can achieve significant reductions in the number of states and memory space.