The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 14, 2014
Filed:
Mar. 30, 2006
Michael H. Anderson, Lyons, CO (US);
Scott D. Rommel, Lakewood, CO (US);
Scott R. Davis, Denver, CO (US);
Michael H. Anderson, Lyons, CO (US);
Scott D. Rommel, Lakewood, CO (US);
Scott R. Davis, Denver, CO (US);
Vescent Photonics, Inc., Denver, CO (US);
Abstract
A waveguide and method for controllably altering an optical phase delay (OPD) of light traveling along a propagation direction through the waveguide. Many embodiments are disclosed, and in one example, the waveguide may include a core for guiding the light through the waveguide; at least one cladding adjacent the core, wherein the at least one cladding has liquid crystal molecules disposed therein; at least one alignment layer positioned between the at least one cladding and the core, the alignment layer initially aligning at least a portion of the liquid crystal molecules in an initial orientation; and a pair of electrodes for receiving a voltage. As the voltage is applied to the electrodes, an electric field is created between the electrodes and through a portion of the cladding, a portion of the electric field being oriented substantially parallel to a plane of the waveguide so that the alignment of at least a portion of the liquid crystal molecules changes from the initial orientation to a second orientation, thereby changing the OPD for the light traveling through the waveguide. TE polarized light and TM polarized light may travel through the waveguide, and as the voltage is applied to the electrodes, the OPD for the TE polarized light changes while the OPD for the TM polarized light remains substantially unaltered.