The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 15, 2014
Filed:
Jun. 07, 2011
Ehsan Afshari, Ithaca, NY (US);
Wooram Lee, Ithaca, NY (US);
Ehsan Afshari, Ithaca, NY (US);
Wooram Lee, Ithaca, NY (US);
Cornell University, Ithaca, NY (US);
Abstract
A passive frequency divider in a CMOS process. More specifically, an electrical distributed parametric oscillator to realize a passive CMOS frequency divider with low phase noise. Instead of using active devices, which are the main sources of noise and power consumption, an oscillation at half of the input frequency is sustained by the parametric process based on nonlinear interaction with the input signal. For example, one embodiment is a 20 GHz frequency divider utilizing a CMOS varactor and made in a 0.13 μm CMOS process. In this embodiment: (i) without any dc power consumption, 600 mV differential output amplitude can be achieved for an input amplitude of 600 mV; and (ii) the input frequency ranged from 18.5 GHz to 23.5 GHz with varactor tuning. In this embodiment, the output phase noise is almost 6 dB lower than that of the input signal for all offset frequencies up to 1 MHz. Also, a resonant parametric amplifier with a low noise figure (NF) by exploiting the noise squeezing effect. Noise squeezing occurs through the phase-sensitive amplification process and suppresses one of two quadrature components in input noise. When the input signal is only in the direction of the non-suppressed quadrature component, squeezing can lower that NF by almost 3 dB. The resonant structure of the proposed amplifier achieves the squeezing effect using a low number of LC elements.