The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 18, 2014
Filed:
Jul. 08, 2011
Fei Tong, Meldreth, GB;
Andrei Popescu, Cambridge, GB;
Fei Tong, Meldreth, GB;
Andrei Popescu, Cambridge, GB;
Cambridge Silicon Radio Limited, Cambridge, GB;
Abstract
This disclosure concerns beam-forming vectors and beam-forming matrices for multiple-input, multiple-output (MIMO) communications systems. These systems, from the method perspective, provide, according to one embodiment, a method of feeding back, to a transmitter from a receiver in a MIMO communications system, at least part of a beam-forming vector of a beam-forming matrix, wherein: the vector relates to a spatial stream of the MIMO system; the vector comprises a series of elements; each element specifies a beam-forming weight for a respective transmit antenna of the transmitter; and the method comprises: calculating a scaling factor that would scale a first element of the vector to a value of one; scaling the other element or elements of the vector with the scaling factor; and feeding back the scaled other element or elements to the transmitter to inform a beam-forming process. These systems, from the method perspective, provide, according to another embodiment, a method of processing a beam-forming matrix, wherein: the beam-forming matrix is for adjusting signals that are to issue from the transmit antennae of a MIMO communications system; the MIMO communications system comprises a transmitter and a receiver; the beam-forming matrix is capable of being decomposed into a series of beam-forming vectors; each beam-forming vector relates to a spatial stream of the MIMO system; each beam-forming vector comprises a series of elements; each element specifies a beam-forming weight for a transmit antenna of the transmitter; and the method comprises: obtaining a beam-forming matrix in which the elements are quantized; and orthogonalizing the beam-forming vectors with respect to one another.