The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 21, 2014
Filed:
Aug. 25, 2010
Delmar L. Barker, Tucson, AZ (US);
Brian J. Zelinski, Tucson, AZ (US);
William R. Owens, Tucson, AZ (US);
Delmar L. Barker, Tucson, AZ (US);
Brian J. Zelinski, Tucson, AZ (US);
William R. Owens, Tucson, AZ (US);
Raytheon Company, Waltham, MA (US);
Abstract
Engineered defects are reproduced in-situ with graphene via a combination of surface manipulation and epitaxial reproduction. A substrate surface that is lattice-matched to graphene is manipulated to create one or more non-planar features in the hexagonal crystal lattice. These non-planar features strain and asymmetrically distort the hexagonal crystal lattice of epitaxially deposited graphene to reproduce 'in-situ' engineered defects with the graphene. These defects may be defects in the classic sense such as Stone-Wales defect pairs or blisters, ridges, ribbons and metacrystals. Nano or micron-scale structures such as planar waveguides, resonant cavities or electronic devices may be constructed from linear or closed arrays of these defects. Substrate manipulation and epitaxial reproduction allows for precise control of the number, density, arrangement and type of defects. The graphene may be removed and template reused to replicate the graphene and engineered defects. As such, expensive and time-consuming techniques can be justified to create the template. The capability to control the defect pattern in graphene enables the creation of structured devices such as waveguides, resonant cavities and electron devices in graphene.