The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 24, 2013
Filed:
Sep. 04, 2009
Ying Hsu, San Clemente, CA (US);
Itzhak Sapir, Irvine, CA (US);
Paul Ronney, Monrovia, CA (US);
G. Jeffrey Snyder, Alta Dena, CA (US);
Ying Hsu, San Clemente, CA (US);
Itzhak Sapir, Irvine, CA (US);
Paul Ronney, Monrovia, CA (US);
G. Jeffrey Snyder, Alta Dena, CA (US);
Other;
Abstract
A micro-combustion power system is disclosed. The invention is comprised of a housing that further comprises two flow path volumes, each having generally opposing flow path directions and each generally having opposing configurations. Each flow path volume comprises a pre-heating volume having at least one pre-heating heat exchange structure. Each flow path volume further comprises a combustion volume having a combustion means or structure such as a catalytic material disposed therein Further, each flow path volume comprise a post-combustion volume having at least one post-combustion heat exchange structure. One or more thermoelectric generator means is in thermal communication with at least one of the combustion volumes whereby thermal energy generated by an air/fuel catalytic reaction in the combustion volume is transferred to the thermoelectric generator to convert same to electrical energy for use by an external circuit. A novel element of the invention relates to the opposing configuration and opposing flow path directions of the respective flow path volumes. The pre-heating heat exchange structure in the first flow path volume and the opposing post-combustion heat exchange structure are comprised of a shared, thermally conductive structure and material. In this embodiment, waste heat from the exhaust gas in the post-combustion chamber is thermally transferred to the opposing pre-heating volume to heat the air/fuel mixture therein to a suitable pre-combustion temperature to take advantage of waste heat while better managing thermal/cooling issues of the device during operation.