The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 24, 2013
Filed:
Nov. 16, 2010
Amirhooshang Farahani Samani, Lausanne, CH;
Jeyran Hezaveh, Lausanne, CH;
Ali Talebi, Dearborn Heights, MI (US);
Amirhooshang Farahani Samani, Lausanne, CH;
Jeyran Hezaveh, Lausanne, CH;
Ali Talebi, Dearborn Heights, MI (US);
Innovaradio SA, Plan-les-Ouates, CH;
Abstract
The present invention concerns the field of power amplifiers and in particular the enhancement of the performance of the amplifier by a feedback loop acting on the input signal. It describes a method for linearizing a power amplifier circuit having a digital base-band input signal, a power output signal, a power amplifier and a linearizer module (LM), this method comprising the steps of: extracting a feedback signal from the power amplifier (PA) output signal, down-converting the feedback RF-signal to feedback IF-signal, filtering the feedback IF-signal with a band-pass filter, A/D converting the filtered feedback IF-signal into a feedback digital signal, converting the feedback digital signal into frequency-domain using fast-Fourier transform FFT on a block of n-samples to obtain a feedback FB-FFT block, converting the input base-band digital signal into frequency-domain using fast-Fourier transform FFT on a block of n-samples to obtain a input FF-FFT block, dividing the input FF-FFT block with the feedback FB-FFT block to obtain FFT correction samples blocks, averaging at least two blocks of FFT correction samples to obtain FFT correction coefficient values, applying the FFT correction coefficient values to a digital complex multiplier, converting the output of the multiplier from frequency domain into time domain with an inverse FFT module to obtain a corrected digital input signal, converting the corrected digital input signal to analog IF signal with a digital to analog converter to obtain a corrected IF input signal, applying the band-pass filter to the corrected IF input signal, up-converting the filtered corrected IF input signal to obtain a corrected RF input signal, applying the corrected RF input signal to the power amplifier.