The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 17, 2013

Filed:

Nov. 30, 2007
Applicants:

J. Gavin Macdonald, Decatur, GA (US);

Molly K. Smith, Atlanta, GA (US);

Inventors:

J. Gavin MacDonald, Decatur, GA (US);

Molly K. Smith, Atlanta, GA (US);

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01N 21/77 (2006.01);
U.S. Cl.
CPC ...
Abstract

A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow to a subsequent detection zone for analysis. The barrier zone is formed from a blood cell barrier composition that includes an unsaturated aliphatic fatty acid or an ester thereof. Without intending to be limited by theory, the present inventors believe such unsaturated aliphatic fatty acid molecules undergo autoxidation in the presence of air and hemoglobin to release peroxides (e.g., hydrogen peroxide) via oxidative saturation of double bonds. In turn, the released peroxides are believed to induce the formation of echinocytes or crenated blood cells. The crenated red blood cells are distorted in shape and less flexible and malleable than normal red blood cells, making them less able to penetrate into the pores of the porous membrane of the lateral flow device. Consequently, the stiffer, less flexible cells cannot move easily into the porous and become trapped at the surface of the membrane, while the liquid components of the sample flow and penetrate through the membrane to the detection zone for analysis.


Find Patent Forward Citations

Loading…