The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 10, 2013
Filed:
Apr. 29, 2011
James H. Brown, Scottsdale, AZ (US);
Lee Roy Copeland, Show Low, AZ (US);
Robert Kleiman, Mesa, AZ (US);
Melanie K. Cummings, Lake Elsinore, CA (US);
Sambasivarao Koritala, Sun Lakes, AZ (US);
James H. Brown, Scottsdale, AZ (US);
Lee Roy Copeland, Show Low, AZ (US);
Robert Kleiman, Mesa, AZ (US);
Melanie K. Cummings, Lake Elsinore, CA (US);
Sambasivarao Koritala, Sun Lakes, AZ (US);
International Flora Technologies, Ltd., Chandler, AZ (US);
Abstract
Materials with high levels of unsaponifiable matter, such as extracts from plants, produce hydrolysates with unique properties. Properties that are sought in traditional saponification of natural oils are a result of low levels of unsaponifiables. These properties include high levels of aqueous surfactant activity, water-solubility or ready water-dispersability, activity as foaming agents, and the like. An objective of traditional saponification processes is to increase the water-solubility and surfactant activity of naturally occurring materials. It has been found that the application of a hydrolysis process to materials, particularly materials with a high level of unsaponifiables (e.g., at least 6 weight percent of the material), produces a product with properties significantly different from those products resulting from the conventional saponification of materials with less than 6 weight percent of unsaponifiables. The resulting hydrolysates from the practice of the present invention are substantive, resisting both physical and aqueous-based removal from skin and hair, exhibit a very unique surfactant property, and are not foaming agents with water. Hydrolysates according to the present invention may thus be used to enhance the performance of cosmetics and pharmaceuticals. These hydrolysates can be bioactive agents and alternative natural carrying agents for topical application of materials, particularly for application of materials to the skin or hair of subjects, and provide a substantive support for the materials carried.