The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 11, 2012
Filed:
Aug. 27, 2007
Simona Cavalli, Ispra, IT;
Fabrizio Zizza, Novara, IT;
Simona Cavalli, Ispra, IT;
Fabrizio Zizza, Novara, IT;
Nokia Siemens Networks S.p.A., Cassina de Pecchi (MI), IT;
Abstract
The embodiments disclose a method for balancing traffic load between nearby cells of a mobile radio communication network, e.g. WiMAX Forum stage 2, 3 specifications or 3GPP UMTS Long Term Evolution (LTE), where cells are configured as peer network nodes interconnected by a transport network, e.g. an IP backbone preferably with multicast capability. In a preliminary off line step a) nearby cells are grouped into inner and border constellations. The first ones include group of nearby cells, not necessarily hosted by the same base station site, and belonging to a well defined geographic area, which are characterized by a common target utilization and by a common guard threshold for traffic load measured value. The second ones include the set of cells which are at the border between two inner constellations; target utilization and guard threshold are not defined, instead and cells actually belong to more than one inner constellation and have visibility over their target utilization and guard threshold parameters. Successively, in each constellation are executed the following on line steps: b) among all cells are exchanged their actual and residual traffic load status; c) all cells calculate the average actual traffic load into the constellation and compare it to their actual traffic load; d) cells with actual traffic load over the average book unreserved adjacent cells with the lowest actual traffic load and the highest residual traffic load as targets for traffic offloading; e) each booking cell command a fraction of its mobile terminals to execute handovers towards respective target cells accepting to be reserved; f) the reserved cells are released. Border constellation cells are enabled to trigger traffic offloading only when the average actual traffic load of the neighbor constellation is lower than its target utilization parameter.