The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 28, 2012
Filed:
Jul. 14, 2009
Andrew Morley, New York, NY (US);
Mohan J. Palathingal, Oradell, NJ (US);
Leon Manole, Great Meadows, NJ (US);
Ernest L. Logsdon, Jr., Newton, NJ (US);
Andrew Morley, New York, NY (US);
Mohan J. Palathingal, Oradell, NJ (US);
Leon Manole, Great Meadows, NJ (US);
Ernest L. Logsdon, Jr., Newton, NJ (US);
The United States of America as represented by the Secretary of the Army, Washington, DC (US);
Abstract
A Kinetic Energy penetrator round is shown effective in neutralizing incoming air borne threat munitions such as rockets, artillery, or mortars for instance, without posing a threat in urban environments to harm bystanders on the ground. There are also no hazards or expense with this round of cleaning up unexploded ordnance, which might have occurred with other types of rounds due to unreliability of self destruct mechanisms. Shown herein is a kinetic energy penetrator for air defense that merely self destructs beyond its operational range into fragments that are not lethal to personnel on ground; no pyrotechnic or energetic materials means are used to activate this self destruct process. A full bore projectile structure is shown that is composed of plural axi-symmetric circular disks stacked on each other and tied by a shape memory metal wire of Nitinol. While operational as a joined group, the disks are a formidable round to kill an incoming air target. After the self destruct phase however, each disk is separated from adjacent disks on either side by a spring mechanism that enables separation after the process is initiated in flight when the Nitinol wire deforms due to heating from air drag. Each disk then proceeds alone with low enough terminal kinetic energy on the ground to be less than lethal.