The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 17, 2012
Filed:
Dec. 19, 2008
Joseph S. Silkey, Florissant, MO (US);
Philip Smereczniak, St. Peters, MO (US);
Joseph S. Silkey, Florissant, MO (US);
Philip Smereczniak, St. Peters, MO (US);
The Boeing Company, Chicago, IL (US);
Abstract
Systems and methods for controlling air vehicle boundary layer airflow are disclosed. Representative methods can include applying electrical energy bursts and/or other energy bursts in nanosecond pulses in the boundary layer along a surface of an air vehicle. In a particular embodiment, electrical energy is discharged into the boundary layer to reduce the tendency for the boundary layer to separate and/or to reduce the tendency for the boundary layer to transition from laminar flow to turbulent flow. In other embodiments, energy can be discharged via pulses having a pulse width of about 100 nanoseconds or less, and an amplitude of about 10,000 volts or more. Actuators discharging the energy can be arranged in a two-dimensional ray of individually addressable actuators. Energy can be delivered to the boundary layer via a laser emitter, and energy can be received in a receiver after having transited over at least a portion of the airflow surface. In another embodiment, high energy electrons can be injected into the boundary layer using a hollow cathode array at the airflow surface. In still another embodiment, energy can be introduced at the surface of the air vehicle at a rate sufficient to heat the flow and cause shock waves to propagate into the flow.