The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 27, 2012
Filed:
Dec. 22, 2008
Alois Herkommer, Aalen, DE;
Holger Muenz, Aalen, DE;
Alois Herkommer, Aalen, DE;
Holger Muenz, Aalen, DE;
Carl Zeiss Laser Optics GmbH, , DE;
Abstract
The invention relates to an optical delay module for lengthening the propagation path of a light beam comprises a first spherical mirror and a second spherical mirror, the first spherical mirror and the second spherical mirror having equal radii of curvature, the first and the second mirror being arranged on a common axis of symmetry with concave sides of the first and second mirrors being situated opposite one another at a distance from one another which corresponds to the radii of curvature of the first and second mirrors. The module also includes a coupling-in area for coupling the light beam into a space between the first and second mirrors and a coupling-out area for coupling the light beam out of the space between the first and second mirrors. The propagation path of the light beam between the coupling-in area and the coupling-out area corresponding at least approximately to quadruple the mirror distance, at least one optical arrangement arranged between the first and second mirrors, the optical arrangement being arranged to transfer the light beam between the first and second mirrors in such a way that the propagation path of the light beam without masking out of beam parts between the coupling-in area and the coupling-out area corresponds approximately to 2N times the mirror distance, where N is an integer >2.