The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 13, 2012
Filed:
Dec. 26, 2007
Byoung-seung Ham, Incheon, KR;
Byoung-Seung Ham, Incheon, KR;
INHA-Industry Partnership Institute, Incheon, KR;
Abstract
A system, method, and apparatus for delayed optical router based on slow light and nondegenerate four-wave mixing processes are presented, in which three laser pulses interact with a three-level nonlinear optical medium composing two closely spaced ground states and an excited state. The delayed optical routing mechanism is based on a slow light phenomenon, in which a group velocity of an incoming input signal pulse is slowed down due to quantum coherence induced refractive index change. The two-photon coherence induced on the ground states via electromagnetically induced transparency is optically recovered via nondegenerate four-wave mixing processes. The nondegenerate four-wave mixing generation is enhanced owing to absorption cancellation. In this case, the individual pulse switching/routing time is limited by the coherence decay time that is much faster than population decay time, where the population decay-time is a limiting factor of conventional switching devices. In the present invention of the delayed optical router the overall switching/routing time, however, is controlled to be delayed by using the slow light. Even though the overall switching/routing time can be delayed, the switching bandwidth of the present invention is not degraded at all because the input and output signal's group velocity across the delayed optical router is still same. Therefore, the present invention of the delayed optical router gives an advantage of wide-bandwidth optical data traffic control using a narrow-bandwidth processing unit such as an electronic device. Another advantage is signal amplifications owing to the dark-resonance enhanced nondegenerate four-wave mixing processes.