The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 17, 2012
Filed:
Jun. 12, 2007
H. Russell Kunz, Vernon, CT (US);
Leonard Bonville, Marlborough, CT (US);
Rachid Zaffou, East Hartford, CT (US);
Ruichun Jiang, Rochester, NY (US);
James Fenton, Cocoa, FL (US);
H. Russell Kunz, Vernon, CT (US);
Leonard Bonville, Marlborough, CT (US);
Rachid Zaffou, East Hartford, CT (US);
Ruichun Jiang, Rochester, NY (US);
James Fenton, Cocoa, FL (US);
University of Connecticut, Farmington, CT (US);
Abstract
The present disclosure provides for a bipolar plate assembly for use in a fuel cell stack. The bipolar plate assembly includes: (a) at least one flow field layer defining a flow field portion and a perimeter portion; (b) at least one core assembly including at least one porous carbon layer and at least one impermeable layer; and (c) a cathode side reactant and an anode side reactant. The at least a first flow field layer is made from a porous carbon material and the perimeter portion is impregnated with a polymer material. The porous carbon layer is joined to: (i) the at least one impermeable layer on a first side by an adhesive material; and (ii) the flow field layer perimeter on a second side by a second adhesive material. The at least a first flow field layer defines reactant inlet and outlet ports and reactant flow passageways for each of the cathode side reactant and the anode side reactant. A method of making such a bipolar plate as described herein is also provided, as well as a method for rendering a layer of carbon material substantially impervious to a liquid agent such as an acid and rendering the porous carbon components wettable to retain an acidic liquid electrolyte. Fuel cell bipolar plates made in accordance with the teachings herein exhibit excellent heat transfer characteristics, and are particularly effective in conducting heat to the edge of a fuel cell stack.