The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 13, 2011

Filed:

Mar. 03, 2008
Applicants:

Parviz Soroushian, Okemos, MI (US);

Anagi Manjula Balachandra, Okemos, MI (US);

Inventors:

Parviz Soroushian, Okemos, MI (US);

Anagi Manjula Balachandra, Okemos, MI (US);

Assignee:

Other;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A01K 1/015 (2006.01);
U.S. Cl.
CPC ...
Abstract

Shaped articles with the inherent capability to evolve in response to at least one of external and internal stimuli are described. These articles comprise at least one solid electrolyte with at least one dissolved salt, and at least one interface which involves a solid electrolytes and a conductive solid. Electric potential gradients, generated within the solid electrolyte by at least one of external and internal stimuli, guide and drive the self-healing and adaptation phenomena. The electric potential gradient is generated by at least one of the following effects: (i) direct application of an electric potential across the solid electrolyte; (ii) introduction of interfaces of different electrode potentials between the solid electrolyte and conductive solids; (iii) introduction of an interface between the solid electrolyte and a conductive solid embodying atoms of lower ionization energy than at least one of the atoms forming the ions of the dissolved salt in solid electrolyte; (iv) application of external load and environmental effects which, either directly or when interacting with defects developed in the article during manufacturing and use, generate stress and temperature gradients which, in turn, produce or magnify the potential gradients between the interfaces with solid electrolyte. The mechanisms through which the electric potential gradient generated by different stimuli bring about changes in article performance involve migration of ions and their electrodeposition within the solid electrolyte and at interfaces.


Find Patent Forward Citations

Loading…