The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 24, 2011
Filed:
Oct. 01, 2010
Alan R. Sugg, Naperville, IL (US);
David S. Mccallum, West Chicago, IL (US);
Alan R. Sugg, Naperville, IL (US);
David S. McCallum, West Chicago, IL (US);
Vega Wave Systems, Inc., West Chicago, IL (US);
Abstract
An array of optically coupled cavities (called micro-cavities) of a semiconductor laser are defined by either an etch and/or by a native oxide of an aluminum-bearing III-V semiconductor material and are arranged serially end-to-end along the longitudinal direction. An etch and/or native oxide defines a refractive index change for the longitudinal optical mode and confines the optical field within the micro-cavities, resulting in reflection and optical feedback distributed periodically along the laser stripe in the form of an optically coupled micro-cavity. The wavelength of emission of the laser is controlled by a combination of the length of the optical micro-cavities and the spacing between adjacent optical micro-cavities. Single-longitudinal-mode operation is exhibited over an extended drive current range. In one embodiment, two or more linear arrays of end-coupled micro-cavities are arranged in the longitudinal axis of the laser cavity to obtain a tunable laser. The device, with multiple reflectors constructed out of optical micro-cavities, is tuned either thermally or by current injection partitioned among the elements. The tunable laser exhibits a vernier tuning amongst resonances of the two or more optically-coupled micro-cavities.