The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 01, 2011
Filed:
Feb. 04, 2008
Enrique V. Barrera, Houston, TX (US);
Fernando J. Rodriguez-macias, Houston, TX (US);
Karen Lozano, McAllen, TX (US);
Luis Paulo Felipe Chibante, Houston, TX (US);
David Harris Stewart, Houston, TX (US);
Enrique V. Barrera, Houston, TX (US);
Fernando J. Rodriguez-Macias, Houston, TX (US);
Karen Lozano, McAllen, TX (US);
Luis Paulo Felipe Chibante, Houston, TX (US);
David Harris Stewart, Houston, TX (US);
William Marsh Rice University, Houston, TX (US);
Abstract
A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.