The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 10, 2010
Filed:
Feb. 23, 2001
Daniel M. Hartmann, La Jolla, CA (US);
Sadik C. Esener, San Diego, CA (US);
Osman Kibar, San Diego, CA (US);
Daniel M. Hartmann, La Jolla, CA (US);
Sadik C. Esener, San Diego, CA (US);
Osman Kibar, San Diego, CA (US);
The Regents of the University of California, Oakland, CA (US);
Abstract
High performance microlens arrays are fabricated by (i) depositing liquid on the hydrophilic domains of substrates of patterned wettability by either (a) condensing liquid on the domains or (b) withdrawing the substrate from a liquid solution and (ii) optionally curing the liquid to form solid microlenses. The f-number (f) of formed microlenses is controlled by adjusting liquid viscosity, surface tension, density, and index of refraction, as well as the surface free energies of the hydrophobic and hydrophilic areas. The f-number of formed microlenses is also adjustable by controlling substrate dipping angle and withdrawal speed, the array fill factor and the number of dip coats used. At an optimum withdrawal speed fis minimized and array uniformity is maximized. At this optimum, arrays of f/3.48 microlenses were fabricated using one dip-coat with uniformity better than Δf/f˜±3.8% while multiple dip-coats permit production of f/1.38 microlens arrays and uniformity better than Δf/f˜±5.9%. Average fs are reproducible to within 3.5%. The method is adaptable and extendible to precision parallel fabrication of (i) microlenses precisely sized, aligned and spatially positioned to various small light sources and optical fiber ends, (ii) conductive bump bonds on substrate pads, and (iii) conductive bonds between corresponding domains on separate perpendicular substrates, all of which are self-aligned.