The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 20, 2010
Filed:
Mar. 19, 2002
Per Andersson, Uppsala, SE;
Mats Inganas, Uppsala, SE;
Gunnar Thorsen, Stockholm, SE;
Gunnar Kylberg, Bromma, SE;
Per Andersson, Uppsala, SE;
Mats Inganas, Uppsala, SE;
Gunnar Thorsen, Stockholm, SE;
Gunnar Kylberg, Bromma, SE;
Gyros Patent AB, Uppsala, SE;
Abstract
A microscale method for the characterization of one or more reaction variables that influence the formation or dissociation of an affinity complex comprising a ligand and a binder, which have mutual affinity for each other. The method is characterized in comprising the steps of: (i) providing a microfluidic device comprising a microchannel structures that are under a common flow control, each microchannel structure comprising a reaction microactivity; (ii) performing essentially in parallel an experiment in each of two or more of the plurality of microchannel structures, the experiment in these two or more microchannel structures comprising either a) formation of an immobilized form of the complex and retaining under flow conditions said form within the reaction microactivity, or b) dissociating, preferably under flow condition, an immobilized form of the complex which has been included in the microfluidic device provided in step (i), at least one reaction variable varies or is uncharacterized for said two or more microchannel structures while the remaining reaction variables are kept essentially constant; (iii) measuring the presentation of the complex in said reaction microactivity in said two or more microchannel structures; and (iv) characterizing said one or more reaction variables based on the values for presentation obtained in step (iii).