The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 11, 2010

Filed:

Jul. 30, 2001
Applicants:

Elliot L. Chaikof, Atlanta, GA (US);

June Feng, Duluth, GA (US);

Janine M. Orban, Warsaw, IN (US);

Hongbo Liu, Hillsborough, NJ (US);

Xue Long Sun, Atlanta, GA (US);

Keith M. Faucher, Athens, GA (US);

Inventors:

Elliot L. Chaikof, Atlanta, GA (US);

June Feng, Duluth, GA (US);

Janine M. Orban, Warsaw, IN (US);

Hongbo Liu, Hillsborough, NJ (US);

Xue Long Sun, Atlanta, GA (US);

Keith M. Faucher, Athens, GA (US);

Assignee:

Emory University, Atlanta, GA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61L 27/00 (2006.01); A61F 13/00 (2006.01); A61K 9/127 (2006.01);
U.S. Cl.
CPC ...
Abstract

A biocompatible biological component is provided comprising a membrane-mimetic surface film covering a substrate. Suitable substrates include hydrated substrates, e.g. hydrogels which may contain drugs for delivery to a patient through the membrane-mimetic film, or may be made up of cells, such as islet cells, for transplantation. The surface may present exposed bioactive molecules or moieties for binding to target molecules in vivo, for modulating host response when implanted into a patient (e.g. the surface may be antithrombogenic or antiinflammatory) and the surface may have pores of selected sizes to facilitate transport of substances therethrough. An optional hydrophilic cushion or spacer between the substrate and the membrane-mimetic surface allows transmembrane proteins to extend from the surface through the hydrophilic cushion, mimicking the structure of naturally-occurring cells. An alkylated layer directly beneath the membrane-mimetic surface facilates bonding of the surface to the remainder of the biological component. Alkyl chains may extend entirely through the hydrophilic cushion when present. To facilitate binding, the substrate may optionally be treated with a polyelectrolyte or alternating layers of oppositely-charged polyelectrolytes to facilitate charged binding of the membrane-mimetic film or alkylated layer beneath the membrane-mimetic film to the substrate. The membrane-mimetic film is preferably made by in situ polymerization of phospholipid vesicles.


Find Patent Forward Citations

Loading…