The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 23, 2010
Filed:
Oct. 31, 2005
Magnus Stig Torsten Sandell, Bristol, GB;
Darren Phillip Mcnamara, Bristol, GB;
Steve Carl Jamieson Parker, Bristol, GB;
Magnus Stig Torsten Sandell, Bristol, GB;
Darren Phillip McNamara, Bristol, GB;
Steve Carl Jamieson Parker, Bristol, GB;
Kabushiki Kaisha Toshiba, Tokyo, JP;
Abstract
The present invention relates to estimating and correcting for frequency offset errors in wireless receivers, and is particularly but not exclusively related to MIMO WLAN applications. The present invention provides an improved method of tracking receiver frequency offsets in a receiver for MIMO systems. These receiver based frequency offset components are caused by errors or inaccuracies in various receiver sub-systems such as phase lock loops or carrier frequency oscillator error, and sampling clock rate errors. The frequency offsets due to each of a number of receiver sub-systems are estimated by monitoring frequency offsets on a number of channels or subcarriers (such as OFDM pilot channels) on different frequencies. These channel frequency offsets are preferably estimated by detecting the phase rotation between adjacent pilot symbols on each respective channel. They are then weighted according to a quality parameter of the estimates, which corresponds to their accuracy. An example of a quality parameter is the effective SNR of the respective channels, or preferably the error variance of the phase rotation. In an embodiment the quality parameter is or is proportional to ∥Hx∥. The weighted channel frequency offsets are then used to determine one or more receiver sub-system frequency offset components. For example a least squares line fit analysis can be performed.