The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 21, 2009
Filed:
Dec. 01, 2006
Jae-eun Jang, Seoul, KR;
Seung-nam Cha, Seoul, KR;
Byong-gwon Song, Seoul, KR;
Yong-wan Jin, Seoul, KR;
Jae-Eun Jang, Seoul, KR;
Seung-Nam Cha, Seoul, KR;
Byong-Gwon Song, Seoul, KR;
Yong-Wan Jin, Seoul, KR;
Samsung SDI Co., Ltd., Suwon-si, Gyeonggi-do, KR;
Abstract
A memory device that performs writing and reading operations using a mechanical movement of a nanowire, and a method of manufacturing the memory device are provided. The memory device includes a source electrode, a drain electrode, and a gate electrode, each of which is formed on an insulating substrate. A nanowire capacitor is formed on the source electrode. The nanowire capacitor includes a first nanowire vertically grown from the source electrode, a dielectric layer formed on the outer surface of the first nanowire, and a floating electrode formed on the outer surface of the dielectric layer. A second nanowire is vertically grown on the drain electrode. The drain electrode is arranged between the source electrode and the gate electrode. The second nanowire is elastically deformed and contacts the nanowire capacitor when a drain voltage is applied to the drain electrode, and polarity of the drain voltage is opposite to polarity of a source voltage that is applied to the source electrode. Information is stored in the memory device in a form of a charged or non-charged state of the nanowire capacitor. Reading and writing operation of the memory device is performed by the mechanical movement of the second nanowire.