The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 07, 2009
Filed:
Nov. 09, 2007
Naoki Abe, Rye, NY (US);
Bianca Zadrozny, New York, NY (US);
Naoki Abe, Rye, NY (US);
Bianca Zadrozny, New York, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
Methods for multi-class cost-sensitive learning are based on iterative example weighting schemes and solve multi-class cost-sensitive learning problems using a binary classification algorithm. One of the methods works by iteratively applying weighted sampling from an expanded data set, which is obtained by enhancing each example in the original data set with as many data points as there are possible labels for any single instance, using a weighting scheme which gives each labeled example the weight specified as the difference between the average cost on that instance by the averaged hypotheses from the iterations so far and the misclassification cost associated with the label in the labeled example in question. It then calls the component classification algorithm on a modified binary classification problem in which each example is itself already a labeled pair, and its (meta) label is 1 or 0 depending on whether the example weight in the above weighting scheme is positive or negative, respectively. It then finally outputs a classifier hypothesis which is the average of all the hypotheses output in the respective iterations.