The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 09, 2009

Filed:

Sep. 14, 2005
Applicant:

Shi-ming Chen, Tainan, TW;

Inventor:

Shi-Ming Chen, Tainan, TW;

Assignee:

Epistar Corporation, Hsinchu, TW;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01L 27/15 (2006.01);
U.S. Cl.
CPC ...
Abstract

A lateral current blocking light-emitting diode and a method for manufacturing the same are disclosed. The light-emitting diode comprises an insulating substrate, a semiconductor epitaxial structure and electrodes of different conductivity types. The semiconductor epitaxial structure has at least one trench and comprises a first conductivity type semiconductor layer deposed on a portion of the insulating substrate, in which a bottom of the trench is beneath the first conductivity type semiconductor layer, an active layer located on a portion of the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer deposed on the active layer. A first conductivity type electrode is deposed on the exposed portion of the first conductivity type semiconductor layer, and a second conductivity type electrode is deposed on a portion of the second conductivity type semiconductor layer, in which the trench covers the shortest conductive path between the first conductivity type electrode and the second conductivity type electrode, so as to block the current between the first conductivity type electrode and the second conductivity type electrode from flowing through the shortest conductive path.


Find Patent Forward Citations

Loading…