The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 09, 2009
Filed:
Jan. 28, 2005
Kentei Yono, Tsukuba, JP;
Paul-francois Paradis, Tsukuba, JP;
Takehiko Ishikawa, Tsukuba, JP;
Shinichi Yoda, Tsukuba, JP;
Kentei Yono, Tsukuba, JP;
Paul-Francois Paradis, Tsukuba, JP;
Takehiko Ishikawa, Tsukuba, JP;
Shinichi Yoda, Tsukuba, JP;
Japan Aerospace Exploration Agency, Tokyo, JP;
Abstract
Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiOand a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal. The single crystal exhibits innovative dielectric characteristics having a large relative permittivity (100,000 or more at room temperature) and a low dielectric loss. In addition, the single crystal has excellent temperature stability allowing the relative permittivity to be gently reduced in the range of room temperature to 70 K.