The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 12, 2009
Filed:
Jul. 31, 2007
Valery I. Tolshikhin, Ottawa, CA;
Fang Wu, Ottawa, CA;
Valery I. Tolshikhin, Ottawa, CA;
Fang Wu, Ottawa, CA;
OneChip Photonics Inc., Ottawa, Ontario, CA;
Abstract
The invention describes an integrated-photonics arrangement, implementable in a multi-layer III-V semiconductor structure, which has a semiconductor substrate; an epitaxial semiconductor structure grown on this substrate in one growth step; a common waveguide; and a plurality of wavelength-designated waveguides; all the waveguides being formed in this epitaxial structure using conventional semiconductor processing techniques. Each waveguide being defined by the bandgap wavelength of its core region and all the waveguides being arranged vertically in order of ascending bandgap wavelength; with the common waveguide placed at the bottom of the structure and the wavelength-designated waveguide having the longest bandgap wavelength placed at the top of the structure. In use, the bandgap wavelength of the common waveguide being well below any operating wavelength, therefore providing conditions for low-loss propagation of each operating wavelength to its designated waveguide through the common waveguide. The invention discloses a method of wavelength demultiplexing (multiplexing) for optical signals in a plurality of wavelengths, which are co- or bi-directionally propagating within the integrated-photonics arrangement, by vertical splitting them from (combining them into) the common waveguide into (from) wavelength designated waveguides.