The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 27, 2009

Filed:

Jun. 25, 2004
Applicants:

Robert L. Thornton, Los Altos, CA (US);

Xiaolei Shi, Mountain View, CA (US);

Inventors:

Robert L. Thornton, Los Altos, CA (US);

Xiaolei Shi, Mountain View, CA (US);

Assignee:

Research Investment Network, Inc., Long Beach, CA (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01S 5/00 (2006.01);
U.S. Cl.
CPC ...
Abstract

A near field optical apparatus comprising a conductive sheet or plane having an aperture therein with the conductive plane including at least one protrusion which extends into the aperture. The location, structure and configuration of the protrusion or protrusions can be controlled to provide desired near field localization of optical power output associated with the aperture. Preferably, the location, structure and configuration of the protrusion are tailored to maximize near field localization at generally the center of the aperture. The aperture preferably has a perimeter dimension which is substantially resonant with the output wavelength of the light source, or is otherwise able to support a standing wave of significant amplitude. The apparatus may be embodied in a vertical cavity surface emitting layer or VCSEL having enhanced nearfield brightness by providing a conductive layer on the laser emission facet, with, a protrusion of the conductive layer extending into an aperture in the emission facet. The aperture in the emission facet preferably has dimensions smaller than the guide mode of the laser, and the aperture preferably defines different regions of reflectivity under the emission facet. The depth of the aperture can be etched to provide a particular target loss, and results in higher optical power extraction from the emission facet.


Find Patent Forward Citations

Loading…