The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 21, 2008
Filed:
Apr. 08, 2004
Paul H. Grobert, Granada Hills, CA (US);
Paul H. Grobert, Granada Hills, CA (US);
Raytheon Company, Waltham, MA (US);
Abstract
A dynamic weight generator. The inventive generator includes a first memory for storing a PN code; a second memory for storing a plurality of weights, the second memory being coupled to the first memory whereby data output by the first memory is used to address data stored in the second memory; and a correlator for multiplying an input signal by data output by the second memory. In the illustrative embodiment, the weights are finite impulse response filter correlation coefficients. The correlator includes two multipliers. The first of the multipliers is coupled to a source of an in-phase component of the input signal. The second of the multipliers is coupled to a source of a quadrature component of the input signal. The outputs of the multipliers are summed. In the illustrative application, the input signal is a GPS signal. For this application, the inventive teachings are implemented in a signal processing system adapted to receive a GPS signal and provide in-phase and quadrature signals in response thereto. The signal is filtered with a finite impulse response filter to provided weighted signals. The weighted signals are processed to generate nulling and beamsteering weights for the weighted signals. The weights may be used to equalize the received signals. In a more specific implementation, the received signals are partitioned into space frequency adaptive processing bands and space time adaptive processing is performed within the SFAP bands.