The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 03, 2008
Filed:
Dec. 16, 2002
Marc Girault, Caen, FR;
Jean-jacques Quisquater, Rhode Saint-Genese, BE;
Marc Girault, Caen, FR;
Jean-Jacques Quisquater, Rhode Saint-Genese, BE;
France Telecom, Paris, FR;
Math Riszk, Louvain La Neuve, BE;
Abstract
The invention concerns a cryptographic method whereby a second entity (B) verifies by means of a public key, a proof provided by a first entity (A), which consists in the generation by the first entity (A) of a first random number r much higher than any first integer s included in a private key kept secret by the first entity (A). The first entity (A) generates a first element of proof resulting from a modulo n exponentiation of a first integer G included or not in said public key and whereof the exponent is the first random number r. In combination with the first element of proof, a so-called common number, is generated so that the second entity (B) and the first entity (A) should have knowledge of the common number. The first entity (A) generates an image y of said private key by linear combination of the first random number r and of at least a first private key integer s. At least a multiplicative coefficient of the linear combination is said common number. Any one entity generates a second element of proof Y equal to a power modulo n of a second integer G included or not in said public key and whereof the exponent is the image y of said common number, and sends the second element of proof Y to the first entity (B). The second entity (B) verifies whether the first element of proof is in conformity with a product modulo n of a power of the second element of proof Y whereof the exponent is a third integer e and of a power of a fourth integer v included in said public key whereof the exponent is said common number c.