The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 20, 2008
Filed:
Apr. 13, 2005
Henrik Clausen, Holte, DK;
Eric Paul Bennett, Lyngby, DK;
Henrik Clausen, Holte, DK;
Eric Paul Bennett, Lyngby, DK;
GlycoZym ApS, Horsholm, DK;
Abstract
A novel gene defining a novel enzyme in the UDP-D-galactose: b-N-acetyl-glucosamine β-1,4-galactosyltransferase family, termed β4Gal-T2, with unique enzymatic properties is disclosed. The enzymatic activity of β4Gal-T2 is shown to be distinct from that of previously identified enzymes of this gene family. The invention discloses isolated DNA molecules and DNA constructs encoding β4Gal-T2 and derivatives thereof by way of amino acid deletion, substitution or insertion exhibiting β4Gal-T2 activity, as well as cloning and expression vectors including such DNA, cells transfected with the vectors, and recombinant methods for providing β4Gal-T2. The enzyme β4Gal-T2 and β4Gal-T2-active derivatives thereof are disclosed, in particular soluble derivatives comprising the catalytically active domain of β4Gal-T2. Further, the invention discloses methods of obtaining β-1,4-galactosyl glycosylated saccharides, glycopeptides or glycoproteins by use of an enzymically active β4Gal-T2 protein or fusion protein thereof or by using cells stably transfected with a vector including DNA encoding an enzymatically active β4Gal-T2 protein as an expression system for recombinant production of such glycopeptides or glycoproteins. Also a method for the identification of DNA sequence variations in the β4Gal-T2 gene by isolating DNA from a patient, amplifying β4Gal-T2-coding exons by PCR, and detecting the presence of DNA sequence variation, are disclosed.