The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 17, 2007
Filed:
Sep. 15, 2005
Ahmed A. El-amawy, Baton Rouge, LA (US);
Ahmed A. El-Amawy, Baton Rouge, LA (US);
Board of Supervisors of Louisiana State University And Agricultural and Mechanical College, Baton Rouge, LA (US);
Abstract
Optical Packet Switching (OPS) is considered the most desirable switching technology for the ubiquitous optical networks that carry internet traffic. OPS could provide for great flexibility, capacity, efficiency, and bandwidth utilization that current switching strategies are not capable of providing. Despite its great appeal, OPS has been hampered by some major hurdles that prevented its practical implementation. Among such hurdles are optical buffering, optical processing/update of headers and to a lesser extent synchronization. This document introduces a novel technique for implementing packet switching in the optical domain. The new approach makes it possible to find efficient and cost effective solutions to the major problems that traditionally rendered optical packet switching (OPS) impractical. The new approach is applicable to any network topology. A complete suite of solutions to all aspects of optical packet switching that take full advantage of the basic novel approach are described. We present a complete set of solutions to the issues of buffering, header processing/update, regeneration, and synchronization among others. The new approach and affiliated solutions make it possible to implement OPS directly over WDM thus offering a very flexible optical layer capable of meeting future demand in a cost effective way.