The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 17, 2007
Filed:
May. 07, 2003
J. Ross Mitchell, Calgary, CA;
T. Chen Fong, Calgary, CA;
Bradley G. Goodyear, Calgary, CA;
Hongmei Zhu, Calgary, CA;
J. Ross Mitchell, Calgary, CA;
T. Chen Fong, Calgary, CA;
Bradley G. Goodyear, Calgary, CA;
Hongmei Zhu, Calgary, CA;
976076 Alberta Inc., Calgary, Alberta, CA;
Abstract
The present invention relates to a method for filtering time-varying MR signal data prior to image reconstruction. A one-dimensional FT is applied to the time-varying MR signal data along each frequency-encode line of k space. The phase p of each complex pair (R, I) of the FT transformed data is calculated to create a phase profile for each frequency-encode line. This process is repeated for all time points of the time-varying MR signal data. The time course of each point within the phase profile is then transformed into Stockwell domain producing ST spectra. Frequency component magnitudes indicative of an artifact are determined and replaced with a predetermined frequency component magnitude. Each of the ST spectra is then collapsed into a one-dimensional function. New real and imaginary values (R', I′) of the complex Fourier data are calculated based on the collapsed ST spectra which are transformed using one-dimensional inverse Fourier transformation for producing filtered time-varying MR signal data. The method for filtering time-varying MR signal data is highly advantageous by easily identifying high-frequency artifacts within the ST spectrum and filtering only frequency components near the artifacts. Therefore, high-frequency artifacts are substantially removed while the frequency content of the remaining signal is preserved, enabling for example detection of subtle frequency changes occurring over time.